Self-admissible sets
نویسندگان
چکیده
Best-response sets (Pearce [29, 1984]) characterize the epistemic condition of “rationality and common belief of rationality.” When rationality incorporates a weak-dominance (admissibility) requirement, the self-admissible set (SAS) concept (Brandenburger-Friedenberg-Keisler [18, 2008]) characterizes “rationality and common assumption of rationality.” We analyze the behavior of SAS’s in some games of interest—Centipede, the Finitely Repeated Prisoner’s Dilemma, and Chain Store. We then establish some general properties of SAS’s, including a characterization in perfect-information games.
منابع مشابه
Presentations of Structures in Admissible Sets
We consider copies and constructivizations of structures in admissible sets. It is well known that in classical computable model theory (on natural numbers) these approaches are equivalent: a structure has computable (decidable) copy if and only if it is constructivizable (strongly constructivizable). However, in admissible sets the "if" part of this statement is not true in general. In the rst...
متن کاملBarwise: infinitary logic and admissible sets
0. Introduction 1 1. Background on infinitary logic 2 1.1. Expressive power of Lω1ω 2 1.2. The back-and-forth construction 3 1.3. The Scott isomorphism theorem 4 1.4. ω-logic 7 1.5. Familiar theorems 8 1.6. Failure of compactness 9 2. Background on admissible sets 10 2.1. ∆0 formulas and Σ-formulas in set theory 10 2.2. Axioms of KP 11 2.3. Examples of admissible sets 12 2.4. The admissible set...
متن کاملAdmissible Digit Sets and a Modified Stern–Brocot Representation
We examine a special case of admissible representations of the closed interval, namely those which arise via sequences of a finite number of Möbius transformations. We regard certain sets of Möbius transformations as a generalized notion of digits and introduce sufficient conditions that such a “digit set” yields an admissible representation of [0,+∞]. Furthermore we establish the productivity ...
متن کاملFixed Point Results for Cyclic (α,β)-Admissible Type F-Contractions in Modular Spaces
In this paper, we prove the existence and uniqueness of fixed points for cyclic (α,β)-admissible type F-contraction and F−weak contraction under the setting of modular spaces, where the modular is convex and satisfying the ∆2-condition. Later, we prove some periodic point results for self-mappings on a modular space. We also give some examples to s...
متن کاملOn optimal polynomial meshes
Let P d n be the the space of real algebraic polynomials of d variables and degree at most n, K ⊂ R a compact set, ||p||K := supx∈K |p(x)| the usual supremum norm on K, card(Y ) the cardinality of a finite set Y . A family of sets Y = {Yn ⊂ K, n ∈ N} is called an admissible mesh in K if there exists a constant c1 > 0 depending only on K such that ||p||K ≤ c1||p||Yn , p ∈ P d n , n ∈ N, where th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Economic Theory
دوره 145 شماره
صفحات -
تاریخ انتشار 2010